NERVE GROWTH FACTOR

Beta-nerve growth factor

GeneNGF
神経増殖因子βはNTRK1とNGFRの細胞外リガンドとして細胞のシグナル伝達を活性化する。
Nerve growth factor is important for the development and maintenance of the sympathetic and sensory nervous systems. Extracellular ligand for the NTRK1 and NGFR receptors, activates cellular signaling cascades through those receptor tyrosine kinase to regulate neuronal proliferation, differentiation and survival.



High affinity nerve growth factor receptor

GeneNTRK1
Receptor tyrosine kinase involved in the development and the maturation of the central and peripheral nervous systems through regulation of proliferation, differentiation and survival of sympathetic and nervous neurons. High affinity receptor for NGF which is its primary ligand, it can also bind and be activated by NTF3/neurotrophin-3. However, NTF3 only supports axonal extension through NTRK1 but has no effect on neuron survival. Upon dimeric NGF ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades driving cell survival and differentiation. Through SHC1 and FRS2 activates a GRB2-Ras-MAPK cascade that regulates cell differentiation and survival. Through PLCG1 controls NF-Kappa-B activation and the transcription of genes involved in cell survival. Through SHC1 and SH2B1 controls a Ras-PI3 kinase-AKT1 signaling cascade that is also regulating survival. In absence of ligand and activation, may promote cell death, making the survival of neurons dependent on trophic factors.
Isoform TrkA-III is resistant to NGF, constitutively activates AKT1 and NF-kappa-B and is unable to activate the Ras-MAPK signaling cascade. Antagonizes the anti-proliferative NGF-NTRK1 signaling that promotes neuronal precursors differentiation. Isoform TrkA-III promotes angiogenesis and has oncogenic activity when overexpressed.
Catalytic activityi
ATP + a [protein]-L-tyrosine = ADP + a [protein]-L-tyrosine phosphate.PROSITE-ProRule annotation
Enzyme regulationi
The pro-survival signaling effect of NTRK1 in neurons requires its endocytosis into signaling early endosomes and its retrograde axonal transport. This is regulated by different proteins including CFL1, RAC1 and SORT1. NTF3 is unable to induce this signaling probably due to the lability of the NTF3-NTRK1 complex in endosomes. SH2D1A inhibits the autophosphorylation of the receptor, and alters the recruitment and activation of downstream effectors and signaling cascades (By similarity). Regulated by NGFR.

Subunit structurei
Exists in a dynamic equilibrium between monomeric (low affinity) and dimeric (high affinity) structures. Homodimerization is induced by binding of a NGF dimer. Interacts with SQSTM1; bridges NTRK1 to NGFR. Forms a ternary complex with NGFR and KIDINS220; this complex is affected by the expression levels of KIDINS220 and an increase in KIDINS220 expression leads to a decreased association of NGFR and NTRK1 (By similarity). Interacts with SH2D1A; regulates NTRK1 (By similarity). Interacts (phosphorylated upon activation by NGF) with SHC1; mediates SHC1 phosphorylation and activation. Interacts (phosphorylated upon activation by NGF) with PLCG1; mediates PLCG1 phosphorylation and activation. Interacts (phosphorylated) with SH2B1 and SH2B2. Interacts with GRB2. Interacts with PIK3R1. Interacts with FRS2. Interacts with SORT1; may regulate NTRK1 anterograde axonal transport. Interacts with RAB7A (By similarity). Found in a complex, at least composed of KIDINS220, MAGI2, NTRK1 and RAPGEF2; the complex is mainly formed at late endosomes in a nerve growth factor (NGF)-dependent manner (By similarity). Interacts with RAPGEF2; the interaction is strengthened after NGF stimulation (By similarity).

Tumor necrosis factor receptor superfamily member 16

GeneNGFR
骨格筋、脂肪組織のインスリン刺激によるGLUT4の受容体の異動にRAB31を制御することで重要な役割を持つ。低親和性の受容体として、NGFやBDNF、NT3/4と結合する。神経細胞死と同様に生存に作用する。
Plays a role in the regulation of the translocation of GLUT4 to the cell surface in adipocytes and skeletal muscle cells in response to insulin, probably by regulating RAB31 activity, and thereby contributes to the regulation of insulin-dependent glucose uptake (By similarity). Low affinity receptor which can bind to NGF, BDNF, NT-3, and NT-4. Can mediate cell survival as well as cell death of neural cells. Necessary for the circadian oscillation of the clock genes ARNTL/BMAL1, PER1, PER2 and NR1D1 in the suprachiasmatic nucleus (SCN) of the brain and in liver and of the genes involved in glucose and lipid metabolism in the liver.
Tumor necrosis factor receptor superfamily member 16
Alternative name(s):
Gp80-LNGFR
Low affinity neurotrophin receptor p75NTR
Low-affinity nerve growth factor receptor
Short name:
NGF receptor
p75 ICD
CD_antigen: CD271
Subunit structure
ジスルフィド結合によるホモダイマー。p75NTR-associated cell death executorと相互作用する。NTRK1と三量体を作る。

Homodimer; disulfide-linked. Interacts with p75NTR-associated cell death executor. Interacts with TRAF2, TRAF4, TRAF6, PTPN13 and RANBP9. Interacts through TRAF6 with SQSTM1 which bridges NGFR to NTRK1. Interacts with BEX1 and NGFRAP1/BEX3. Interacts with KIDINS220 and NTRK1. Can form a ternary complex with NTRK1 and KIDINS220 and this complex is affected by the expression levels of KIDINS220. An increase in KIDINS220 expression leads to a decreased association of NGFR and NTRK1. Interacts with NTRK2; may regulate the ligand specificity of the NTRK2 receptor. Interacts (via death domain) with RAB31. Interacts with LINGO1 and NRADD. Interacts with MAGED1; the interaction antagonizes the association NGFR:NTRK1.
Domain
Death domain is responsible for interaction with RANBP9.
The extracellular domain is responsible for interaction with NTRK1.