AMP活性化プロテインキナーゼ

ヴォート基礎生化学(第4版)508ページ
いろいろな代謝に係わる酵素がAMPによるアロステリックな調節を受ける。また、AMP活性化プロテインキナーゼ(AMPK)によるリン酸化を受ける。
AMPKはATPを産生する異化経路を活性化する。一方で、ATPを消費する生合成経路を阻害することで、生命維持に必須の課程にATPを回す、
三量体(α:活性サブユニット、β、γ:調節サブユニットATPで抑制、AMPで活性化)
AMPK自身の172Thrがリン酸化を受けると活性が100倍増加する。(LKB1によりリン酸化される)
AMPはγサブユニットがリン酸化されやすいように立体構造を変化させ、活性型のAMPKのγサブユニットに結合して活性を5倍増加させる。
心筋型PFK2/FBPase2はAMPKによるリン酸化を受けてPFK2活性が増加する(解糖系が活性化される)
肝臓では、アセチルCoAカルボキシラーゼ、HMG-CoAレダクターゼ、グリコーゲンシンターゼを不活性化する。(同化反応を抑える)
骨格筋では、ACC活性が下がり、マロニルCoAの濃度が下がることで、パルミチン酸が異化されやすくなる。
脂肪組織では、ホルモン感受性リパーゼを抑制する。(細胞内脂肪酸蓄積を抑える)

http://www.uniprot.org/uniprot/P54646
AMP活性化プロテインキナーゼは、ヘテロ3量体で、αサブユニットは酵素活性をもち、βとγは調節に関与する。
AMPK is a heterotrimer of an alpha catalytic subunit (PRKAA1 or PRKAA2), a beta (PRKAB1 or PRKAB2) and a gamma non-catalytic subunits (PRKAG1, PRKAG2 or PRKAG3). Interacts with FNIP1 and FNIP2.

catalytic subunit (alpha)

AMPKはエネルギーセンサープロテインキナーゼとして細胞のエネルギー代謝の調節に関与する。
細胞内ATPレベルの低下にともない、AMPKは活性化され代謝酵素を直接リン酸化し、エネルギー産生経路を活性化し、エネルギー消費経路および炭水化物や脂質の同化経路を成長や増殖と同様に抑制する。代謝経路を直接リン酸化するのみならず、転写因子のリン酸化により長い期間の効果ももたらす。
細胞骨格のリモデリングにも関与する。脂肪合成にはACACA(アセチルCoAカルボキシラーゼ)やLIPE(ホルモン感受性リパーゼ)
Thr-172のリン酸化により活性化を受ける。γサブユニットにAMPが結合することでさらに活性化される。
Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively. Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3. AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160. Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A. Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm. In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Acts as a key regulator of cell growth and proliferation by phosphorylating TSC2, RPTOR and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2. In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1. AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it. May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it. Also has tau-protein kinase activity: in response to amyloid beta A4 protein (APP) exposure, activated by CAMKK2, leading to phosphorylation of MAPT/TAU; however the relevance of such data remains unclear in vivo. Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1.
Enzyme regulation
トレオニン172のリン酸化で活性化される。γサブユニットにAMPが結合しするとリン酸化されやすくなる。また脱リン酸化されにくくなり活性化状態が持続する。
ATPは脱リン酸化を促進し、低活性状態を持続させる。生理的条件で、AMPKはATPと結合して不活性型となっている。メトフォルミンはAMPKを活性化する。
Activated by phosphorylation on Thr-172. Binding of AMP to non-catalytic gamma subunit (PRKAG1, PRKAG2 or PRKAG3) results in allosteric activation, inducing phosphorylation on Thr-172. AMP-binding to gamma subunit also sustains activity by preventing dephosphorylation of Thr-172. ADP also stimulates Thr-172 phosphorylation, without stimulating already phosphorylated AMPK. ATP promotes dephosphorylation of Thr-172, rendering the enzyme inactive. Under physiological conditions AMPK mainly exists in its inactive form in complex with ATP, which is much more abundant than AMP. AMPK is activated by antihyperglycemic drug metformin, a drug prescribed to patients with type 2 diabetes: in vivo, metformin seems to mainly inhibit liver gluconeogenesis. However, metformin can be used to activate AMPK in muscle and other cells in culture or ex vivo (PubMed:11602624). Selectively inhibited by compound C (6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo[1,5-a] pyrimidine. Activated by resveratrol, a natural polyphenol present in red wine, and S17834, a synthetic polyphenol. Salicylate/aspirin directly activates kinase activity, primarily by inhibiting Thr-172 dephospho rylation.

subunit beta

Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin.
Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

gamma subunit

Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits. ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit. ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive.